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ARTICLE

A Fast Method for Computing High-Significance Disease
Association in Large Population-Based Studies
Gad Kimmel and Ron Shamir

Because of rapid progress in genotyping techniques, many large-scale, genomewide disease-association studies are now
under way. Typically, the disorders examined are multifactorial, and, therefore, researchers seeking association must
consider interactions among loci and between loci and other factors. One of the challenges of large disease-association
studies is obtaining accurate estimates of the significance of discovered associations. The linkage disequilibrium between
SNPs makes the tests highly dependent, and dependency worsens when interactions are tested. The standard way of
assigning significance (P value) is by a permutation test. Unfortunately, in large studies, it is prohibitively slow to compute
low P values by this method. We present here a faster algorithm for accurately calculating low P values in case-control
association studies. Unlike with several previous methods, we do not assume a specific distribution of the traits, given
the genotypes. Our method is based on importance sampling and on accounting for the decay in linkage disequilibrium
along the chromosome. The algorithm is dramatically faster than the standard permutation test. On data sets mimicking
medium-to-large association studies, it speeds up computation by a factor of 5,000–100,000, sometimes reducing running
times from years to minutes. Thus, our method significantly increases the problem-size range for which accurate, mean-
ingful association results are attainable.
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Linking genetic variation to personal health is one of the
major challenges and opportunities facing scientists today.
It was recently listed as 1 of the 125 “big questions” that
face scientific inquiry over the next quarter century.1 The
accumulating information about human genetic variation
has paved the way for large-scale, genomewide disease-
association studies that can find gene factors correlated
with complex disease. Preliminary studies have shown
that the cumulative knowledge about genome variation
is, indeed, highly instrumental in disease-association
studies.2–4

The next few years hold the promise of very large as-
sociation studies that will use SNPs extensively.5 There
are already reported studies with 400–800 genotypes,6 and
studies with thousands of genotypes are envisioned.6

High-throughput genotyping methods are progressing
rapidly.7 The number of SNPs typed is also likely to in-
crease with technological improvements: DNA chips with
1100,000 SNPs are in use,8 and chips with 500,000 SNPs
are already commercially available (Affymetrix). Hence, it
is essential to develop computational methods to handle
such large data sets. Our focus here is on improving a key
aspect in the mathematical analysis of population-based
disease-association studies.

The test for association is usually based on the difference
in allele frequency between case and control individuals.
For a single SNP, a common test suggested by Olsen et al.9

is based on building a contingency table of alleles com-
pared with disease phenotypes (i.e., case/control) and
then calculating a -distributed statistic. When multiple2x

markers in a chromosomal region are to be tested, several

studies suggested the use of generalized linear models.10–

12 Such methods must assume a specific distribution of the
trait, given the SNPs, and this assumption does not always
hold. Typically, a Bonferroni correction for the P value is
employed to account for multiple testing. However, this
correction does not take into account the dependence of
strongly linked marker loci and may lead to overconser-
vative conclusions. This problem worsens when the num-
ber of sites increases.

To cope with these difficulties, Zhang et al.13 suggested
a Monte Carlo procedure to evaluate the overall P value
of the association between the SNP data and the disease:
the value of each marker is calculated, and the maxi-2x

mum value over all markers, denoted by , is used asCCmax

the test statistic. The same statistic is calculated for many
data sets with the same genotypes and with randomly
permuted labels of the case and control individuals. The
fraction of permutations for which this value exceeds the
original is used as the P value. A clear advantage ofCCmax

this test is that no specific distribution function is as-
sumed. Additionally, the test handles multiple testing di-
rectly and avoids correction bias. Consequently, it is
widely used and, for instance, is implemented in the state-
of-the-art software package, Haploview, developed in the
HapMap project.

The permutation test can be readily generalized to han-
dle association between haplotypes and the disease—for
example, by adding artificial loci of block haplotypes,14–16

with states corresponding to common haplotypes. Simi-
larly, one can represent loci interactions as artificial loci
whose states are the allele combinations.
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Running time is a major obstacle in performing per-
mutation tests. The time complexity of the algorithm is

, where is the number of permutations, n isO(N nm) NS S

the number of samples, and m is the number of loci. To
search for P values as low as p, at least 1/p permutations
are needed (see appendix A for details). Therefore, the time
complexity can be written as . For instance, to1O( nm)p

reach a P value of in a study that contains 1,000 cases�610
and 1,000 controls with 10,000 loci, 11013 basic computer
operations are required, with a running time of 130 d on
a standard computer. Scaling up to larger studies with
�100,000 loci is completely out of reach.

When complex diseases are being studied, SNP inter-
actions should also be considered, and, then, time com-
plexity is an even greater concern. Several statistical stud-
ies focus on modeling loci interactions that have little or
no marginal effects at each locus.17–19 Recently, Marchini
et al.20 addressed the issue of designing association studies,
given the plausibility of interactions between genetic loci
with nonnegligible marginal effects. In all of these studies,
the multiple-testing cost of fitting interaction models is
much larger than that of the single-locus analysis. Fur-
thermore, the dependency among different tests is higher,
so the disadvantage of the conservative Bonferroni cor-
rection is exacerbated. For example, when all possible pair-
wise loci interactions are tested, the number of tests grows
quadratically with the number of loci, and applying Bon-
ferroni correction would artificially decrease the test
power. In this case, the permutation test is of even higher
value. Unfortunately, the running time is linearly corre-
lated with the number of tests, which causes this algo-
rithm to become prohibitively slow, even with a few hun-
dred SNPs.

In this study, we present a faster algorithm for com-
puting accurate P values in disease-association studies. We
apply a well-known statistical technique, importance sam-
pling, to considerably decrease the number of sampled
permutations. We also use the linkage disequilibrium (LD)
decay property of SNPs, to further improve the running
time. These two elements are incorporated in a new sam-
pling algorithm called “RAT (Rapid Association Test).” Ac-
counting for decay in LD has already been employed by
several studies, for the development of more-efficient and
more-accurate algorithms. For example, by using this
property, Halperin et al.21 reported a more accurate and
faster method for tagging-SNP selection, and Stephens et
al.22 presented an algorithm that improves the phasing
accuracy. To the best of our knowledge, LD decay has not
yet been exploited in permutation tests.

In the standard permutation test (SPT), when y per-
mutations are performed and z successes are obtained, the
P value is estimated as z/y. However, when , wez p 0
know only that . Therefore, to obtain small P valuep � 1/y
bounds, one has to expend a lot of computational effort.
In contrast, our method provides an estimate of the true
P value, with a guaranteed narrow error distribution
around it. The distribution gets narrower as the P value

decreases, and, therefore, much less effort is needed to
achieve accurate, very low P values.

Our method has a running time of , whereO(nb � N nc)R

is the number of permutations drawn by RAT, b is aNR

predefined sampling constant, and c is the upper bound
on the distance in SNPs between linked loci. Put differ-
ently, any two SNPs that have �c typed SNPs between
them along the chromosome are assumed to be indepen-
dent. In appendix A, we analyze in terms of the neededNR

accuracy and the true P value.
We compared the performance of our algorithm with

that of the regular permutation test, on simulated data
generated under the coalescent model with recombina-
tion23 (ms software) and on real human data. For both
algorithms, we measured accuracy by the SD of the mea-
sured P value. We required an accuracy of 10�6 and com-
pared the times to convergence in both algorithms. On
realistic-sized data sets, RAT runs 3–5 orders of magnitude
faster. For example, it would take ∼30 d for the SPT to
evaluate 10,000 SNPs in a study with 1,000 cases and 1,000
controls, whereas RAT needs ∼2 min. When marker-trait
association is tested in simulations with 3,000 SNPs from
1,000 cases and 1,000 controls, it is 15,000 times faster.
With 10,000 SNPs from chromosome 1, a speed-up of
120,000 is achieved. With 30,556 simulated SNPs from
5,000 cases and 5,000 controls, it would take 4.62 years
for the SPT to achieve the required accuracy, whereas RAT
requires 24.3 min. Hence, our method significantly in-
creases the problem-size range for which accurate, mean-
ingful association results are attainable.

This article is organized as follows: in the “Methods”
section, we formulate the problem and present the math-
ematical details of the algorithm. In the “Results” section,
results for simulated and real data are presented. The “Dis-
cussion” section discusses the significance of the results
and future plans. Some mathematical analysis and proofs
are deferred to appendix A.

Methods
Problem Formulation

Let n be the number of individuals tested, and let m be the number
of markers. The input to our problem is a pair ( ), where M isM,d
an –“markers matrix” and d is an n-dimensional “disease-n # m
status” vector. When haplotype data are used, the dimensions of
the matrix may be . The possible types (alleles) a marker2n # m
may attain are denoted by . Hence, if the0,1, … ,s � 1 M(i,j) p k
ith individual has type k in the jth marker. Each component of
the disease vector is either 0 (for an unaffected individual) or 1
(for an affected individual). An “association score” betweenS(d)
M and d is defined below. Let p(d) be a permutation of the vector
d. The goal is to calculate the P value of —that is, the prob-S(d)
ability of obtaining an association score � under the randomS(d)
model, in which all instances (M, p(d)) are equiprobable.

Let (i.e., y is the number of affected individuals).n
y p � d(a)ap1

In this article, the set of all possible permutations of the binary
vector d is defined by { is a binary vector that contains exactlyvFv
y 1s}. In other words, two permutations cannot have the same
coordinates set to 1. Following this definition, there are pos-n( )y
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sible permutations of d, instead of possibilities by the standardn!
definition of a permutation. Notice that, since all (standard) per-
mutations are equiprobable, our definition for a permutation is
equivalent to the standard one from a probabilistic view: for each
of the permutations with the use of our definition, there aren( )y
exactly permutations with the use of the standardy!(n � y)!
definition.

For two marker vectors x and y of size n, let T denote their
contingency table. T is built as follows: T p F{kFx(k) p i,i,j

. Let be its expected contingency table, assumingy(k) p j}F TE

the vectors x and y are independent—that is, T pEi,j

. The Pearson score of the table T is2� T � T /� T xi,a a,j a,ba a a,b

. We also use to denote .2S(T) p � (T � T ) /T S(x,y) S(T)i,j Ei,j Ei,ji,j

The jth column of the matrix M is denoted by . We use theM7,j

notation for the score . Hence, is the PearsonS (x) S(M ,x) S (d)j 7,j j

score of marker j and the disease vector d. Under the random
model described above, the asymptotic distribution of isS (d)j

, with df.24 For a vector x, let —that is,2x s � 1 S(x) p max S (x)j j

the highest Pearson score of any marker in M with the disease
vector x. is called the “association score” for . We wouldS(d) (M,d)
like to calculate the probability that , where x is a ran-S(x) 1 S(d)
dom permutation of the vector d.

Let be the event space of all possible permutations of thenF ( )y
vector d. The probability measure of is defined asF Ga � F:

. We use to denote . Let be the subset1Pr (a) p f(7) Pr (7) HF FFFF

of , such that . (Note that through-F H p {d Fd � F,S(d ) � S(d)}i i i

out we denote, by , the ith permutation and not the ith com-di

ponent of the vector d.) Then, is the desired P value.FHFp p FFF

Zhang et al.13 proposed a Monte Carlo sampling scheme of the
space . This test will be referred to as the “SPT.” The runningF
time of this algorithm is , where is the number ofO(nmN ) NS S

permutations of the standard algorithm. We use to denote thepS

calculated P value of SPT and to denote the calculated P valuepR

of our algorithm.

Importance Sampling

We now describe our sampling method. We use the methodology
of importance sampling.25 Informally, in SPT, sampling is done
from all possible permutations of the labels of the case and con-
trol individuals. This is very computationally intensive, since the
number of all possible permutations can be very large. For ex-
ample, the number of all possible permutations for 1,000 cases
and 1,000 controls is . In our method, instead of2,000 600≈ 10( )1,000
sampling from this huge space, sampling is done from the space
of all “important permutations”—namely, all possible permuta-
tions that give larger association scores than the original one. To
achieve this goal, we first define this probability space (i.e., define
a probability measure for each of these permutations) and then
show how to correctly sample from it. This sampling is done in
three steps: (1) a column (or a SNP) is sampled, (2) a contingency
table is sampled for that column from the set of all possible con-
tingency tables that are induced by this column and whose as-
sociation score is at least as large as the original one, and (3) an
important permutation that is induced by this contingency table
is sampled.

We construct an event space , which contains the same eventsG
as but with a different probability measure that will be definedH
below. has three important properties: (1) one can efficientlyG
sample from , (2) the probability of each event in can be readilyG G
calculated, and, (3) for each , . The probabilityd � H Pr (d ) 1 0i G i

function over is denoted by .G g(7)

We use NR to denote the number of permutations drawn by
the RAT algorithm. With the use of property 3, if NR samples are
drawn from instead of from , thenG F

NR1 f(d )ip p lim . (1)�
N g(d )ip1N r� R iR

We now define the probability measure on . For a permutationG
, let . Namely, ise � H Q(e) p F{jF 1 � j � m, S (e) � S(d)}F Q(e)j

the number of columns in M whose Pearson score with the disease
vector e is at least S(d). Observe that, since , . Thee � H Q(e) � 1
probability of e in is defined as:G

Q(e)
g(e) p . (2)� Q(e)

e�H

Let be the set of all possible contingency tables that corre-Tj

spond to column j of M and to different permutations of the
vector d. The number of different permutations of d that cor-
respond to a specific contingency table T is denoted by mj(T) and
can be calculated directly as follows:

s�1
T � Ti,0 i,1m (T) p . (3)�j ( )Tip0 i,1

Let T be a contingency table that fits column j. Define

m (T) S(T) � S(d)jm (T) p .j {0 otherwise

Let be the set . Observe that .mH H p {d FS (d ) � S(d)} H p ∪ Hj j i j i jp1 j

Define .C p {T � T F S(T) � S(d)}j j

The following sampling algorithm from will be referred to asG
the “ -sampler”:G

1. Sample a column j with probability .FH Fjm� FH Faap1

2. Sample a contingency table T from with probability .m (T)jCj FH Fj
3. Sample a permutation that fits the contingency table T uni-

formly—that is, with probability .1
m (T)j

Theorem 1: The probability for a vector di to be sampled in the
-sampler algorithm is g(di).G
Proof: Let , and suppose that . Let T be the cor-d � G Q(d ) p qi i

responding contingency table of . With the use of the -sampler,d Gi

there is a probability of

FH F m (T) 1 qj jq # # # pm m
FH F m (T)j j� FH F � FH Fa a

ap1 ap1

to choose an element from . Since , themd H � Q(d ) p � FH Fi i jd �H jp1i

probability is .Q(d )i� Q(d )id �Hi

Step 3 in the -sampler can be easily performed, given T. ForG
example, in the case of binary traits, one has to randomly select

out of the controls and out of the cases. When performingT T0,0 0,1

steps 1 and 2, there are two computational challenges: (1) cal-
culating and (2) sampling a contingency table T from withFHF Cj

probability . We present two different schemes for these prob-m (T)j

FH Fj
lems: an exact algorithm and a faster approximation algorithm.

An exact algorithm.—For a column j, we enumerate all s�1O(n )
possible contingency tables and construct the set . For each tableCj
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T, we calculate according to formula (3), and is calcu-m (T) FH Fj j

lated by . The total time complexity of this al-FH F p � m (T)j jT�Cj

gorithm is .s�1O(n m � N nm)R

An approximation algorithm.—To calculate , let b be a con-FHF

stant. We randomly sample a set L of b columns and calculate
for each of the columns in set L, by using the exact algo-FH Fj

rithm. is then approximated by . In practice, formFHF � FH FjH �Lb j

the problem sizes we tested, this approach was very accurate when
used with . The running time of this step is , ands�1b p 100 O(n b)
the total running time of the algorithm is . Ins�1O(n b � N nm)R

our case, , since there are two possible alleles in each po-s p 2
sition, so the time complexity becomes .O(nb � N nm)R

For sampling a contingency table from with probabilityT CJ

, we use a Metropolis-Hastings sampling algorithm.26,27 Wem (T)j

FH Fj
define a directed graph with nodes corresponding to Markov
states and with edges corresponding to transitions between states.
Each state represents a specific contingency table T and is denoted
by St(T). Let . Our goal is to sample a state St(T) withm (T)jp(T) p FH Fj
probability . We do this by generating a random walk thatp(T)
has a stationary distribution p[St(T)].

To define the edges in the graph, we first need some definitions.
We say that a row is “extreme” if one of its cells has value 0. T
is a “boundary table” if it has fewer than two nonextreme rows.
A “tweak” to a contingency table is obtained by taking a 2 # 2
submatrix, decreasing by one the elements on one diagonal, and
increasing by one the elements on the other diagonal. A tweak
is “legal” if the resulting table is nonnegative.

Let be the set of all contingency tables that can be ob-N (T)g

tained by a legal tweak of T. In addition, if T is a boundary table,
then also contains all other possible boundary tables thatN (T)g

maintain . The resulting set constitutes the pos-p[St(T)] 1 0 N (T)g

sible transitions from St(T).

Let J(Told,Tnew) be defined as:

1
T � N (T )new g oldFN (T )Fg oldJ(T ,T ) p .old new {

0 otherwise

The sampling algorithm, which will be called “T-sampler,” is
as follows:

1. Start with an arbitrary table .T � Cold j

2. Choose an arbitrary table , and calculateT � Ng(T )new old

p(T )J(T ,T )new new oldh p min 1, .[ ]p(T )J(T ,T )old old new

3. With probability h, set .T p Told new

4. Return to step 2.

The T-sampler algorithm is stopped after a predefined constant
number of steps, denoted by z, and outputs the final contingency
table T. It is guaranteed that, when z is large enough, T is sampled
with probability close to . The last sentence holds true, sincep(T)
the sampler is irreducible (this is proved in appendix A). The
running time of the T-sampler algorithm is bounded by a con-
stant, since z is a predefined constant.

Once a permutation is drawn, calculating takesd Q(d )i i

, so the total running time of the algorithm (applying theO(nm)
-sampler for NR permutations) is . We note that, whenG O(N nm)R

n is not too large, the sampling of the contingency table can be
done by calculating the probability of all possible contin-s�1O(n )
gency tables. This is relevant, in particular, when testing individ-
ual SNPs (and, thus, ).s p 2

Calculating g(di) and the P value.—After a random permutation
is drawn from , is calculated in the following way: ac-d G g(d )i i

cording to equation (2), we need to calculate both andQ(d )i
. The second term, , equals and ism� Q(d ) � Q(d ) � FH Fi i jd �H d �H jp1i i

calculated only once, as a prepossessing step. We denote this value
by G. The first term is calculated in time, by going over allO(m)
columns and counting .Q(d ) p F{jF 1 � j � m, S (d ) � S(d)}Fi j i

To calculate the P value, define

1 nF p p .( )
yf(d )i

The P value is calculated using equations (1) and (2):

1N NR R F1 f(d ) 1ip p lim p lim (4)� �
1N g(d ) Nip1 ip1N r� N r�R i RR R Q(d )iG

NRG 1 1
p lim .�

F N Q(d )ip1N r� R iR

Hence, is calculated by .NG 1 1Rp # �R ip1F N Q(d )R i

It follows from equation (4) (with the assumption that G was
correctly computed) that the only factor that determines the ac-
curacy of the importance sampling is the variance of and not1

Q(e)
whether it is small or large. The smaller the variance, the better
the accuracy. This relationship is discussed theoretically in ap-
pendix A. In practice, as described in the “Results” section, the
variance of (or of the calculated P value) was small, though1

Q(e)
not zero, when real data were used. Intuitively, this can be ex-
plained by the limited range of linkage between markers: if the
linkage is limited to, at most, c markers, will not be muchQ(e)
larger than c, and, hence, will be bounded.1Var [ ]Q(e)

Using LD Decay to Improve Time Complexity

In this section, we show how to improve time complexity, under
assumptions of biological properties of the data. Assume that two
SNPs separated by �c SNPs along the genome are independent,
because of the LD decay along the chromosome. c is called the
“linkage upper bound” of the data. Hence, when calculating

for each permutation , it is unnecessary to go over all mQ(d ) di i

SNPs. Let be the position of the SNP that induces the permu-bi

tation that achieves maximum score. Only SNPs within a dis-di

tance of c—that is, SNPs whose positions are between andb � ci

—are checked.b � ci

The remaining SNPs are independent of , so them � 2c � 1 bi

expected number of columns that give scores 1 isS(d) (m � 2c �

, where q is the probability for a single column to result with1)q
a score 1 . q can be calculated only once at the preprocessingS(d)
step. Consequently, only operations are needed to calculateO(cn)

, instead of . Since operations are needed for theQ(d ) O(nm) O(nb)i

preprocessing phase, the total time complexity is .O(nb � N nc)R

Observe that, by increasing the value of c, one can improve the
accuracy of the procedure at the expense of longer run time.

It should be pointed out that, by using this scheme, the correct
expectation of is obtained, since the remote markers areQ(d )i
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Figure 1. Comparison of running times of the two algorithms
that test the disease association of individual SNPs. We present
run times of RAT (#) and SPT (circles) on simulated data under
the coalescent model with recombination. The target P value was

in all cases. Running times reflect savings due to importance�610
sampling only, without the additional possible savings due to LD
decay. The Y-axis gives the logarithm (base 10) of the running
time in seconds.

independent of . Theoretically, the remote markers need notbi

necessarily be independent of each other, and, hence, the cal-
culated may be biased. In practice, as we shall show (in theQ(e)
“Results” subsection “Real Biological Data”), this is a faithful ap-
proximation. Upper bounds on the number of permutations re-

quired to search for a P value p are derived in appendix A, both
for SPT and RAT.

Results

We implemented our algorithm in the software package
RAT in C�� under LINUX.

Simulated Data

To simulate genotypes, we used Hudson’s program that
assumes the coalescent process with recombination23 (ms
software). We followed Nordborg et al.,28 using a mutation
rate of per nucleotide per generation, a recom-�82.5 # 10
bination rate of per pair of nucleotides per genera-�810
tion, and an effective population size of 10,000. Of all the
segregating sites, only the ones with minor-allele fre-
quency 15% were defined as SNPs and were used in the
rest of the analysis. We used the strategy described else-
where29 in choosing the disease marker—that is, we chose
a SNP locus as the disease locus if it satisfied two condi-
tions: (1) the frequency of the minor allele is between
0.125 and 0.175, and (2) the relative position of the
marker among the SNPs is between 0.45 and 0.55 (i.e., the
disease locus is approximately in the middle). The chosen
disease SNP was removed from the SNP data set. We then
generated case-control data according to a multiplicative
disease model. The penetrances of genotypes aa, aA, and
AA are l, lg, and lg2, respectively, where l is the phe-
nocopy rate and g is the genotype relative risk. As in Zhang
et al.,29 we set and , which corresponds tog p 4 l p 0.024
a disease prevalence of 0.05 and a disease-allele frequency
of 0.15. Finally, N cases and N controls were randomly
chosen for each experiment.

We compared the times until convergence in both al-
gorithms, where convergence was declared when the SD
of the computed P value drops below . In all our tests,�610
the actual P values were � (see the “Discussion” sec-�610
tion). We set in RAT, so no LD decay is assumed,c p m
and the running time is measured using only the impor-
tance-sampling component. The approximation algo-
rithm was used in all cases, with the parameter b set to
100. The running times of SPT are very large and, there-
fore, were extrapolated as follows: since at least per-610
mutations are needed to achieve an accuracy of (see�610
appendix A), we measured the running time for 100 per-
mutations, excluding the setup cost (e.g., loading the files
and memory allocation), and multiplied by to obtain410
the evaluated running time. We validated this extrapo-
lation by conducting several experiments with 1,000 per-
mutations. The differences between different runs of 1,000
permutations were ! . All runs were done on a Pen-1.5%
tium 4 2-GHz machine with 0.5 gigabytes of memory.

In the first setup, we simulated 20,000 haplotypes in a
region of 1 Mb. Overall, 3,299 SNPs were generated. We
compared the running times when varying three param-
eters: (1) the number of SNPs (100, 200,…, 2,000), (2) the
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Figure 2. Convergence of RAT to the “true” P value. Each of the five figures represents a different experiment with 100 controls and
100 cases of simulated SNPs in a 1-Mb region (∼3,000 SNPs), under the coalescent model. SPT P value was evaluated by applying
10,000 (A, D, and E) or 100,000 (B and C) permutations. The horizontal dashed lines correspond to the 95% CI of SPT P value. Each
graph corresponds to the RAT P value.

number of sampled cases and controls ( , 1,000,…,N p 500
5,000), and (3) the SNP density. We chose every ith SNP,
where i varies from 1 to 10 (this corresponds to SNP den-
sities between 3,299 and 329 SNPs/Mb). The results are
summarized in figure 1. On average, RAT is faster than SPT
by a factor of 15,000. For example, it would take ∼62 d
for SPT to evaluate all 3,299 SNPs for 5,000 cases and 5,000
controls, whereas RAT needs 13 min to obtain the result.

We also tested both algorithms on a very large data set
consisting of 10 different regions of 1 Mb each. This data
set, generated as described above, contained 5,000 cases
and 5,000 controls with 30,556 SNPs. For RAT, we used a
linkage upper-bound value of kb, on the basis ofc p 100
our observations of LD decay in real biological data (see
the “Real Biological Data” subsection). The evaluation of

the running time of SPT was performed by the same ex-
trapolation method described above. For this data set, SPT
would take 4.62 years to achieve the required accuracy of

, whereas RAT’s running time is 24.3 min (i.e., 100,000�610
times faster).

Since RAT and SPT are both based on sampling, their
computed P values are distributed around the exact one.
Does RAT provide accuracy similar to SPT, in terms of the
spread of their distributions? To answer this question, we
tested whether RAT converges to the P value obtained by
SPT. To obtain a reliable estimate of the P value obtained
by SPT, we used a relatively small number of cases and
controls and ran SPT for a large number of permutations.
We simulated five different data sets, each with 3,299 SNPs
and with 100 cases and 100 controls. We ran SPT for
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Figure 3. Dependence of accuracy on the P value. Data sets were
simulated SNPs under the coalescent model with recombination of
a 1-Mb region. To obtain different P values, we performed the
simulations with different numbers of cases and controls ranging
from 50 to 500.

Figure 4. Running times of RAT and SPT at different P values.
The data sets are simulated data under the coalescent model with
recombination of a 1-Mb region (∼3,300 SNPs) of 5,000 cases and
5,000 controls. To obtain different P values, the simulations were
performed with different phenocopy rates (l parameter) of the
multiplicative disease model. # p RAT; circles p SPT. The Y-axis
shows the logarithm (base 10) of the running time in seconds,
and the X-axis shows the logarithm (base 10) of the P value.

10,000 permutations, to calculate 95% CIs of the “true”
P values. Since a small P value was obtained (!.001) in
two of these experiments, we increased the number of
permutations to 100,000, to improve the accuracy. The
results are summarized in figure 2. In all five cases, con-
vergence of the P value calculated by RAT to the CI was
obtained after !100 permutations.

Our theoretical analysis (see appendix A) shows that,
when RAT with a linkage upper bound is used, the ac-
curacy (measured by SD) increases as the P value decreases.
For evaluation of the actual connection between these two
measures, we used simulated data of a 1-Mb region, as
described above. We conducted several experiments with
different values of N, to obtain a range of P values. In each
experiment, we generated 100 permutations, to estimate
the SD. The results are presented in figure 3. For the whole
range of P values, the SD is, on average, 1/15 of the P
value.

The complexity analysis of both algorithms (see table
A1) shows the theoretical advantage of RAT over SPT when
the required P value is sufficiently small. At what level of
P value does RAT have an advantage in practice? To answer
this question, we tested both algorithms on data generated
by the simulation described above. The data contain
∼3,300 SNPs from 5,000 cases and 5,000 controls. To ob-
tain different P values, the simulations were performed
with different phenocopy rates (l parameter) of the mul-
tiplicative disease model. The results are presented in fig-
ure 4. A shorter running time for RAT can be observed,
starting from .�2P p 10

Real Biological Data

We also tested RAT on HapMap project data. We used SNPs
from chromosomes 1–4 of 60 unrelated individuals in the
CEPH population. We used the GERBIL algorithm and
trios information15,30 to phase and complete missing SNPs

in the data. We amplified the number of samples by adapt-
ing the stochastic model of Li and Stephens for haplotype
generation.31 When there are k haplotypes, the st(k � 1)
haplotype is generated as follows: first, the recombination
sites are determined assuming a constant recombination
rate along the chromosome (we used per pair of ad-�810
jacent nucleotides). Second, for each stretch between two
neighboring recombination sites, one of the k haplotypes
is chosen, with probability 1/k. The process is repeated
until the required number of haplotypes is achieved. After
amplification of the number of samples, cases and con-
trols were chosen as described in the “Simulated Data”
subsection.

We wanted to test the effect of the linkage upper bound
of the algorithm on real data. Different linkage upper
bounds ranging from 1 to 500 kb were checked. For each
of the four chromosomes, we used the first 10,000 SNPs
(∼85 Mb) in 200 cases and 200 controls and applied RAT
with varying values of c. The results are presented in figure
5. A linkage upper bound of 75 kb (which corresponds to
9 SNPs, on average) appears to be enough to obtain very
accurate evaluation of the P value.

For a scenario of genomewide association studies that
requires typing and checking numerous sites, we used the
first 10,000 SNPs of chromosome 1, which span ∼84 Mb.
We used 1,000 cases and 1,000 controls. For this data set,
the running time of RAT for testing disease association of
individual SNPs was 361 s (∼6 min), compared with the

s (∼30 d) needed for SPT.62.6 # 10
The contribution of the LD decay property is larger

when the data set contains more SNPs. To evaluate it, we
measured the running times of RAT while using different
linkage upper bounds, with 1,000 cases and 1,000 controls
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Figure 5. Effect of the linkage upper bound used on the P value calculated by RAT. Data sets A–D are the first 10,000 SNPs in
chromosomes 1–4, respectively, of 200 cases and 200 controls, which were amplified from 60 unrelated individuals (the CEPH population
from the HapMap project). The dashed lines correspond to the 95% CI of the calculated P value. The wide range of P values obtained
is probably due to the random choice of the disease SNP, the stochastic model of the disease, and chromosomal characteristics.

Figure 6. Effect of the LD decay on the speed of RAT. The Y-axis
shows the time required by the permutation phase of the RAT
algorithm. The X-axis shows the assumed linkage bound. The data
are the first 10,000 SNPs in chromosome 1 of 1,000 cases and
1,000 controls, which were amplified from 60 unrelated individuals
(the CEPH population from the HapMap project).

for the 10,000 SNPs of chromosome 1. The permutation
phase of RAT takes 7 s when the linkage upper bound is
1,000 kb and !2 s when it is set to 200 kb (fig. 6). Without
the use of this property, 265 s are required (a factor of
132). An additional preprocessing time of 96 s is needed
in both cases.

Discussion

The faithful calculation of disease association is becoming
more important as more large-scale studies involving
thousands of persons and thousands of SNPs are con-
ducted. Testing not only individual SNPs but also haplo-
types and loci interactions will further increase this need.
Unfortunately, as the size of the data increases, the run-
ning time of SPT becomes prohibitively long. In this work,
we present an algorithm called “RAT” that dramatically
reduces the running time. Our analysis shows that RAT
indeed calculates the permutation test P value with the
same level of accuracy as SPT, but much faster. Our ex-
periments illustrate that the running time of our algo-
rithm is faster by 4–5 orders of magnitude on realistic data
sets. This vast difference in the running time enables an
evaluation of high-significance association for larger data
sets, including evaluations of possible loci interactions
and haplotypes.

It is important to emphasize that the advantage of RAT

over SPT applies only when the sought P value is low.
Consider a case-control–labeled data set of SNPs, and sup-
pose there is no association with the disease (e.g., P p

. Using SPT, one can halt the test after very few per-.5
mutations and conclude that no association exists.
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An important reason for achieving high-significance re-
sults was presented by Ioannidis et al.,32 who asked why
different studies on the same genetic association some-
times have discrepant results. Their aim was to assess how
often large studies arrive at conclusions different from
those of smaller studies and whether this situation arises
more often when there is a contradiction between the first
study and subsequent works. They examined the results
of 55 meta-analyses of genetic association and tested
whether the magnitude of the genetic effect differs in
large, as opposed to smaller, studies. They showed that,
in only 16% of the meta-analyses, the genetic association
was significant and the same result was obtained inde-
pendently by several studies, without bias. In a later work,
Ioannidis33 discussed possible reasons for bias in relatively
small association studies. He argued that, when many re-
search groups conduct similar association studies, the neg-
ative results in studies that do not reach a sufficient sig-
nificance might never be published. Hence, the scientific
literature may be biased. It is hard, or maybe impossible,
to correct this multiple-testing effect, since a researcher
may not be aware of other groups that study the same
question. The solution to this problem is to conduct larger
association studies, which, one would hope, would yield
lower P values. In that sense, knowing that the P value is
below, say, is not sufficient, and obtaining the most�210
accurate evaluation possible of the P value is crucial.

Our procedure also has an advantage in testing a large
population for more than a single disease, where different
diseases may be associated with the genotypes at different
intensities. Here, one also has to correct for testing mul-
tiple diseases. Consider a study that addresses 100 diseases.
In such a scenario, a P value of .01 for a specific phenotype
obtained by SPT with 100 permutations is not sufficient.
In this case, a more accurate evaluation of the significance
of association for each of the phenotypes is required. This
can be done either by increasing the number of permu-
tations of SPT, which may be time prohibitive, or by using
RAT.

Unlike several previous methods, we do not assume any
distribution function of the trait, given the SNPs. The ran-
dom model (adopted from Zhang et al.13) assumes only
that the cases and controls are sampled independently
from a specific population, without any additional re-
quirements about the distribution. However, even this as-
sumption does not always hold. One of the crucial prob-
lems in drawing causal inferences from case-control
studies is the confounding caused by the population struc-
ture. Differences in allele frequencies between cases and
controls may be due to systematic differences in ancestry
rather than to association of genes with disease.34–36 In this
article, this issue is not addressed, and we intend to study
it in the future. We believe that this problem can be solved
by incorporating methods for population structure
inference37,38 into RAT.

Using the LD decay property improves the theoretical
running time of our method, from toO(nb � N nm)R

. This improvement is meaningful when theO(nb � N nc)R

tested region is much larger than c, the linkage upper
bound. In practice, in our experiments, the reduction in
the running time due to the importance sampling was
much more prominent. We are not aware of a method
that can take advantage of LD decay to reduce the running
time in SPT. As we show, the importance-sampling ap-
proach can readily exploit the LD decay property. Since
each drawn permutation in the importance-sampling pro-
cedure is induced by a known locus, testing only neigh-2c
boring loci is possible.

RAT can also expedite association analysis when the
phenotypic information available for each individual is
more complex. For instance, there may be several addi-
tional phenotype columns in the input that describe
smoking status, sex, age group, or existence of another
specific disease. Obviously, with certain factors one cannot
use the property of LD decay, but the speed-up due to the
importance-sampling algorithm still applies.

We have focused here on the problem of finding asso-
ciation between a genotype matrix and a binary trait (cases
and controls), but our algorithm can easily be adapted to
also handle continuous traits. A possible score function
for a specific column j can be the score used in the ANOVA
model, denoted by . The statistic is , and the PF max Fj j j

value can be calculated by permuting the trait values of
individuals, similarly to the binary-traits case. We can use
the same methodologies presented here to efficiently cal-
culate the P value.

This work improves the methodologies for the upcom-
ing large-scale association problems. We achieve a dra-
matic reduction in the time complexity, enabling us to
evaluate low-probability (and high-significance) associa-
tions with many loci, which was previously time prohib-
itive. Nevertheless, much more research should be done
in this direction. If the number of loci is in the tens of
thousands, testing all pairwise interactions is too time
consuming, even with our algorithm. If one wants to ex-
amine k loci interactions, the running time increases ex-
ponentially with k and becomes prohibitive, even for a
relatively small number of SNPs. Additional assumptions,
such as nonnegligible marginal effects,20 may help to re-
duce complexity. We hope that, eventually, combining
such assumptions with faster algorithms like RAT may fa-
cilitate better analysis of very large association studies.
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Appendix A
Theoretical Upper Bounds on the Accuracy

We use the SD of the estimated P value in both algo-
rithms, as a measure of accuracy. Obviously, in both al-



490 The American Journal of Human Genetics Volume 79 September 2006 www.ajhg.org

gorithms, when more permutations are sampled, the SD
is lower. Here, we provide mathematical analysis that re-
lates the number of permutations, the data parameters,
and the accuracy.

For SPT, given that permutations are performed, ifNS

none of the permutations yields a score , weS(d ) 1 S(d)i

can evaluate the SD by

1 1(1 � )N NS S 1�SD(p ) p p V , (A1)( )S N NS S

which implies that, to achieve an accuracy of , ∼1/ per-e e

mutations are needed. In particular, when an accuracy
equal to the true P value p is desired, .N ≈ 1/pS

For the RAT algorithm, let , and let be ,U p FHF c Q(d )i i

where is the ith permutation out of all possible U per-di

mutations in . Let Q denote the random variable ,H Q(e)
where e is a permutation sampled from .G

The expectation of 1/Q is

U1 c 1 UiE p # p ,( ) �
Q G c Gip1 i

and the variance of the calculated P value is

NRG 1 1
Var (p ) p Var # (A2)�R [ ]F N Q(d )ip1R i

NR2G 1 1
p Var( ) �[ ]F N Q(d )ip1R i

2 21 G 1 12
p E � E( ) ( )( ) [ ] [ ]{ }N F Q QR

U
2 21 G 1 1 U

p �( ) � ( )[ ]N F G c Gip1R i

U
2 21 G U 1 1 U

p �( ) � ( )[ ]N F U G c Gip1R i

U
21 G U 1 1 U

p � .( ) � ( )[ ]N F G U c Gip1R i

Observe that

U p Fp . (A3)

Substituting equation (A3) into equation (A2) yields

U
21 Gp U 1 1 U

Var (p ) p � (A4)( ) � ( )R [ ]N U G U c Gip1R i

U 21 G 1 1 U p2p p � � ,� ( )[ ] 1N U U c Gip1R i N E( )R Q

where the last inequality follows from U1 10 � � �U cip1 i

.U( ) � 1G

Without additional assumptions, the expectation of 1/
Q is �1/m. Substituting in equation (A4), we have

m�SD(p ) � p .R NR

Hence, to obtain accuracy p, m permutations are needed.
This bound can be improved if we exploit the LD decay

property of biological data. Since LD decay is limited to
100 kb (see the “Real Biological Data” subsection in the
“Results” section) and the SNP density is, at most, 1:300
bases, in practice. With the assumption of a linkagec ! 350
upper bound c for a specific locus l, there are, at most,

loci that may depend on l. For each of the other loci,2c
the probability that its score with a permutation of the
vector at locus l is 1 is �p. Hence, we can writeS(d)

E(Q) � 2c � (m � c)p . (A5)

Since always holds true because of Jen-1/[E(1/Q)] � E(Q)
sen’s inequality, when substituting equation (A5) in equa-
tion (A4), we get

2c � (m � c)p�SD(p ) � p . (A6)R NR

Equation (A6) establishes the connection between the
data’s parameters and the accuracy. A prominent differ-
ence from the accuracy of SPT, described in equation (A1),
is the strong dependence on p. Interestingly, when all
other data parameters and NR are fixed, the smaller p is,
the more accurate the RAT algorithm is. In other words,
as p decreases, the convergence rate of RAT increases.

Arranging equation (A6) differently,

2 32cp � (m � c)p
N � .R 2[SD(p )]R

If we set the required accuracy, SD(pR), to be p, we have

N � 2c � (m � c)p � 2c � mp .R

Hence, to search for P values as low as p, the number of
required permutations is !( ). In that case, the time2c � mp
complexity of RAT can be written as .2O(nb � nc � pcnm)
The theoretical complexity of the algorithms is summa-
rized in table A1.

Proof of Irreducibility of the T-Sampler Algorithm

We provide a proof that the T-sampler algorithm pre-
sented in the subsection “An approximation algorithm”
(in the “Methods” section) is irreducible. Consider two
tables, and , from the sample space, such thatT T1 2

and . Our goal is to show that there is ap(T ) 1 0 p(T ) 1 01 2

path with probability 10 between and .T T1 2

If both and are boundary tables, thenT T T �1 2 2
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and, hence, , and there is positive prob-N (T ) J(T ,T ) 1 0g 1 1 2

ability to move from directly to .T T1 2

Suppose that, without loss of generality, is not aT1

boundary table. In that case, there are at least two non-
extreme rows a and b in . There are two tables inT1

that are created by legal tweaks on the submatrixN (T )g 1

T Ta,0 a,1 .( )T Tb,0 b,1

We use to denote the table in which is increasedT Tx a,0

by one and to denote the other table. The differenceTy

in the Pearson score of the tables and isT Tx 1

T T T Ta,0 b,1 a,1 b,0S(T ) � S(T ) p 2 � � �x 1 ( )T T T TEa,0 Eb,1 Ea,1 Eb,0

1 1 1 1
� � � � p d � w ,( )T T T TEa,0 Eb,1 Ea,1 Eb,0

where

T T T Ta,0 b,1 a,1 b,0
d p 2 � � �( )

T T T TEa,0 Eb,1 Ea,1 Eb,0

and

1 1 1 1
w p � � � .( )

T T T TEa,0 Eb,1 Ea,1 Eb,0

Similarly, .S(T ) � S(T ) p �d � wy 1

Since , at least one of the expressionsw 1 0 S(T ) � S(T )x 1

and is positive. Suppose that, without loss ofS(T ) � S(T )y 1

generality, . Then, , and .d 1 0 S(T ) 1 S(T ) � S(d) p(T ) 1 0x 1 x

This means that the probability that the sampler moves
from to is positive.T T1 x

If rows a and b still do not have extreme values in ,Tx

the exact same procedure can be repeated again and again,
until we obtain a table in which at least one of these∗T1

rows has an extreme value.
Suppose a steps were performed, generating a sequence

of tables . A straightforward inductive∗T ,T ,…,T p T1 2 a�1 1

argument shows that, for all k, S(T ) � S(T ) p d �k�1 k

. The last inequality follows by the assumption2kw � w 1 0
that . Hence, all the tables in the sequence have pos-d 1 0
itive probability. The same argument is repeated with ad-
ditional nonextreme rows until a boundary table is
reached.

Consequently, there is a path with positive probability
from any nonboundary table to some boundary table.
Since, by definition, transitions between boundary tables
have positive probability, it follows that there is a path of
positive probability between any two tables with p(T) 1

, which proves the irreducibility of the sampler.0

Table A1. Summary of the Theoretical Time Complexities of SPT and RAT

Algorithm
Prepossessing

Phase
Permutations

Phase No. of Permutationsa Total Running Timea

SPT … V(N nm)S 1/p 1
V( nm)p

RAT (no assumptions) O(nb) O(N nm)R �m 2O(nb � nm )
RAT (LD decay assumption) O(nb) O(N nc)R �2c � mp 2O(nb � nc � pcnm)

NOTE.—For RAT with LD decay, as the true P value decreases, fewer permutations are needed, and the relative weight of
the preprocessing phase increases.

a Needed to achieve accuracy p.

Web Resources

URLs for data presented herein are as follows:

Affymetrix GeneChip Human Mapping 500K Array Set, http://
www.affymetrix.com/products/arrays/specific/500k.affx

Haploview, http://www.broad.mit.edu/mpg/haploview/
HapMap project, http://www.hapmap.org/
ms, http://home.uchicago.edu/˜rhudson1/source.html (software

that generates samples under a variety of natural models)
RAT, http://www.cs.tau.ac.il/˜rshamir/rat
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